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Abstract— In all the aerobic organisms, endogenous and exogenous processes generate reactive oxygen 

species (ROS), and their harmful effects are nullified by the antioxidant defense system at some extent. 

Oxidative stress occurs due to imbalance between ROS production and antioxidant defence systems. ROS 

exposure damages the functional biological components of the cells which causes several pathological defects. 

There are reports of these defects, suggest that oxidative stress induced damages are involved in diseases like: 

heart disease, lung disease, chronic kidney disease, neurodegenerative diseases, and cancer. Antioxidants act as 

a therapy and can cure the pathological defects induced by oxidative stress at some level. The purpose of this 

paper is to provide a subjective knowledge on this topic. 

Index Terms— Antioxidants, Reactive oxygen species, free radicals, oxidative stress, damage, diseases, defence 

system 

——————————      —————————— 

1 INTRODUCTION                                                                     

XYGEN is the vital component for the life of aerobic or-

ganisms however certain redox mediated chemical modi-

fications convert this stable compound to highly unstable 

compounds. Reactivity of molecular oxygen (O2) is in-

creased by these modifications and it is capable to initiate 

various biological events (Nita and Grzybowski, 2016). In 

the living organisms, modifications of O2 produce reactive 

oxygen species (ROS) during the normal metabolic pro-

cesses. Collectively ROS is a broad terminology which en-

compasses superoxide anion (O2•‒), hydrogen peroxide 

(H2O2), hydroxyl radical (OH•‒) and more other O2 derived 

chemical species. ROS has inherent property of damaging 

the biological components that leads to the pathological 

defects. (Cross et al., 1987; Finkel 2011). Oxidative stress  

is developed in the system due to shifting of balance be-

tween ROS generation and antioxidant defense system in 

the favor of oxidants (Schieber and Chandel, 2014). Cellular 

system is equipped with number of antioxidant proteins 

that scavenge the ROS and mitigate the oxidative stress 

related defects. Dietary intake of antioxidants in the form 

carotenoids, polyphenols and vitamins improve the health 

quality. 

2 ROS generation 

Reactive Oxygen Species (ROS) are generated inside the 

cells through cellular metabolism. Evolution of superox-

ides, hydrogen peroxide and other stressors are similar as 

other normal processes carried out in the cells. These are 

generated as a byproduct during cellular metabolism like 

mitochondrial respiratory chain and NADPH oxidase ac-

tivities. Functionally hydrogen peroxide works in both 

ways having positive and negative impacts on cellular 

health. Functional modulation of H2O2 depends on its 

availability and concentration (Holmstrom and Finkel, 

2014). Elevated H2O2 level triggers the oxidation of redox 

regulated proteins which are primarily not considered for 

redox functions although these are modulated by ROS me-

diated thiol modifications. Many of the phosphatases, ki-
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nases and transcription factors are activated by ROS de-

pendent thiol modifications within the protein (Brigelius 

and Flohe, 2011). The big question for its dual function is 

how one can predict its actual concentration that will be 

required for normal physiology and pathology. Stochasti-

cally it is easy to answer but realistically, it can only be as-

sumed. It is kind of a tough task because of its high reactiv-

ity, diffusibility and molecular conversion into other chem-

ical species. In normal physiological condition basal H2O2 

level is estimated to be of nanomolar concentration (~ 1-10 

nM) which is elevated transiently to ~ 500-700 nM at the 

time of signaling (Stone and Yang, 2006). Signaling through 

H2O2 is always a contradictory debate among the redox 

scientific groups.  

3 Mitochondria contribution towards ROS 

 Mitochondria, special cell organelles, contribute majorly 

for ROS generation. Single electron reduction of molecular 

oxygen (O2) leads to the formation of superoxide anion 

(O2•‒) inside the mitochondria. There are eight sites present 

in the mitochondria that engage in ROS production. Out of 

eight, three sites located in inner mitochondrial membrane: 

complex I, II and III of mitochondrial respiratory chain are 

well characterized for superoxide generation (Murphy, 

2009; Glasauer and Chandel, 2013).  

Superoxides selectively target the iron sulfur clus-

ter containing proteins and these types of proteins are 

abundantly present inside the mitochondria (Fridovich, 

1997). SOD2 or MnSOD (superoxide dismutase) protein is 

present inside the mitochondrial matrix that dismutates the 

superoxides to hydrogen peroxide (H2O2). Complex III can 

release O2•‒ to inter mitochondrial space from where it can 

be leaching out to cytosol through voltage dependent anion 

channels (Murphy, 2009). SOD1 proteins of cytosol and 

intermembrane space of mitochondria detoxify these dif-

fused superoxides and convert them into H2O2 (Brand, 

2010). So, inside the cells free radical compounds are gen-

erated continuously and converted into varying forms with 

the help of redox proteins. 

 

 

4 NAPDH Oxidases 

 NADPH oxidases (NOXs) are present in the plasma mem-

brane and the membranes of other cell organelles like en-

doplasmic reticulum, mitochondria etc. These proteins are 

also associated with the membranes of phagocytic cells and 

produce superoxides by one electron reduction of O2 in the 

presence of NADPH (Nicotinamide adenine dinucleotide 

phosphate) (Morgan et al., 2011). In mammalian cells NOX 

enzymes of phagocytes are mainly linked with neutrophils 

and macrophages where it is termed as Phox (NOX of 

phagocytes). In normal physiological condition this oxidase 

(Phox) is present in inactive form, while it becomes active 

against exposure of foreign particles or microbial invasion 

and inflammatory mediators. Activation of Phox leads to 

the production of ROS.  

The phagocytic oxidases are multi subunit en-

zymes consisting of catalytic subunits and regulatory sub-

units. Activity of this oxidase is governed by the associa-

tion of these subunits and is specific for the NADPH (as 

electron donor). NOXs or Phox transfers the electrons of 

NADPH to O2 for the generation of O2•‒ which is further 

catalyzed by other cytosolic antioxidant proteins to differ-

ent secondary free radicals like H2O2 (hydrogen peroxide), 

OH• (hydroxyl radical) and nonradicals- HOCl (hypo-

chlorous acid), O3 (ozone) etc. (Nauseef, 2008). Myeloperox-

idase (MPO) and eosinophil peroxidase use the superox-

ides generated by NOX as substrate and produce other by-

products - hypochlorous, hypobromus and hypothiocynaos 

acids. These oxidant products are specifically reactive with 

thiols and methionine residues (Winterbourn, 1985; Patti-

son and Davies, 2006).  

5 Xanthine Oxidase  

Xanthine oxidase (XO), a member of oxidoreductase fami-

ly, is a Mo (molybdenum) containing hydroxylase (Hille, 

2002). XO is mostly found in the eubacteria, archaea and 

eukaryotes. In eukaryotes, it forms a homodimer of 290 

kDa. Each Monomer of XO contain four active sites which 

constitute of a Mo-metal center, two iron-sulfur cluster 

(2FE-2S) and a Flavin adenine dinucleotide (FAD) for redox 

regulations (Hille and Nishino, 1995). XO generates super-

oxides and hydrogen peroxide radicals by catalyzing the 

wide variety of aromatic heterocyclic compounds such as 
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hypoxanthine, xanthine and aldehydes to uric acid (Hille, 

2005). These enzymes are primarily involved in the catabo-

lism of purines in eukaryotes. In humans, XO is expressed 

in the tissues of several organs like kidney, lung and myo-

cardium, though its higher expression has been reported in 

the visceral organs (splanchnic system) (Harrison, 2002). 

TNFα, IL-1β, IFN-γ are well known inflammatory cyto-

kines are linked to induce the expression of this oxidase 

(Kelley et al., 2006). Xanthine oxidases are transcribed as 

Xanthine dehydrogenase (XDH) precursors. Post-

translational modifications and limited proteolysis convert 

the XDH precursor to XO. XDH contains the Mo (IV) center 

associated with Fe/S center along with FADH2 reduces the 

NAD+ to NADH and produces uric acid from substrate hy-

poxanthine (Garattini et al., 2003). During some specific 

conditions as: limited proteolysis, minimal oxygen availa-

bility, inflammation or reversible oxidation of cysteine 535 

and 992, XDH can be converted to XO (Parks et al., 1999). 

Oxidase form of XDH i.e. XO shows more affinity for O2 

than its initial substrate NAD+. Biasness for O2 as a sub-

strate for XO generates O2•‒ and hydrogen peroxide by one 

and two electron transfer respectively from xanthine or 

hypoxanthine (Stipek et al., 1994; Harris and Massey, 1997). 

Therefore, XO is the major source of ROS production inside 

the tissue and vascular system and eliciting ROS mediated 

defects. Superoxides generated from its activity coupled 

with reduced •NO (reduced nitric oxide) form ONOO‒ 

(peroxynitrite) (Aslan et al., 2004). 

 

6 Cellular proteins coping the system against 

stress 

 Redox balance of cellular system is required for normal 

physiological processes and metabolism. Till date we are 

aware of several proteins that contribute their functions for 

balancing the redox system. To mitigate this defect, cellular 

defence system is equipped with various antioxidant pro-

teins. Antioxidant proteins target the ROS according to 

their specificity and detoxify them. 

 

7 Superoxide dismutases (SOD) 

 Superoxides are generated in various metabolic processes 

by one electron reduction. Superoxides are mainly evolved 

with the respiratory electron transport chain and neutro-

philic action. Superoxides and their byproducts are highly 

reactive for biological components and show pathogenesis 

in many cardiovascular diseases; hypercholesterolemia, 

atherosclerosis, hypertension, diabetes and heart failure 

(Fukai and Ushio-Fukai, 2011). Incorporation with other 

chemical compounds, like nitric oxide (NO), which is a rel-

atively weaker oxidant, can convert them into highly reac-

tive oxidants (ONOO‒) peroxinitrite radical. Superoxide 

dismutases provide the principal cellular defense against 

the O2•‒. SODs are the metallo-proteins that dismutate the 

superoxides (O2•‒) to hydrogen peroxide (H2O2) and oxy-

gen (O2). There are three isoforms of SODs are present in 

mammals namely SOD1 (Cu/Zn SOD), SOD2 (Mn SOD) 

and SOD3 (extra cellular Cu/Zn SOD). SOD isoforms are 

the products of different genes and catalyze the same reac-

tions in different cell compartments. 

The mechanism underlying the catalysis of O2•‒ to 

H2O2 by SODs involve the alternating reduction and oxida-

tion of metal ion at the active center of protein in the con-

cerned SODs. SOD1 (Cu/Zn-SOD) is primarily an intracel-

lular protein existing as homodimer of 32 kDa. SOD1 is 

mainly localized in the cytosol while its smaller fractions 

are also present in the intermembrane space of mitochon-

dria (Okado and Fridovich, 2001). Immunocytochemical 

studies in rat hepatocytes showed that SOD1 is present in 

the nucleus, lysosome and peroxisome in addition to cyto-

sol or mitochondrial space (Chang et al., 1988).  SOD2 is Mn 

containing mitochondrial matrix protein existing as 96 kDa 

homotetramer. It is synthesized in the cell cytoplasm and 

enters the mitochondrial matrix by a signal peptide to 

scavenge the O2•‒ of the mitochondrial matrix. 

Extra cellular Cu or Zn SOD (ecSOD), termed as SOD3 is 

composed of two disulfide linked dimers of molecular 

weight 135 kDa. It is mainly present in the extracellular 

vascular space such as blood vessels, lungs, kidney, uterus 

and in trace amounts in the heart (Folz and Crapo, 1994).  

 

8 Catalases 

 Hydrogen peroxide (H2O2) is continuously generated in-

side the living cells by dismutation of superoxides or as 

byproducts of other reactions. Catalases are ubiquitous 

heme containing enzymes found almost in all aerobic or-

ganisms that detoxify the hydrogen peroxide burst by con-
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verting to water (H2O) and oxygen (O2). In mammalian 

cells, it is mainly present in the peroxisomes. Active form 

of mammalian catalase contains four monomers of 60 kDa 

homotetramer subunits. Single monomer subunit of cata-

lase is insufficient for degradation of H2O2, so the activity of 

catalase depends upon its active homotetrameric structure 

(Kirkman and Gaetani, 2006).  

It is a better-known peroxidase although its reactivity with 

less concentration of peroxides is very low due to high Km 

value, around > 10mM. Other peroxidases like glutathione 

peroxidases and peroxiredoxins show low Km than catalase, 

so function as better peroxidases at lower levels of perox-

ides in the mammalian system (Rhee et al., 2003). Catalysis 

of catalases take place in two steps. In the first step H2O2 

oxidizes the iron (Fe3+) of heme to intermediate oxyferryl 

(Fe4+=O) group with porphyrin cation (•α+por) radical. This 

intermediate compound-I (•α+por) radical oxidizes the se-

cond H2O2 (peroxides) or alkyl peroxides into simpler or 

nonoxidative form. H2O2 is catalyzed into H2O and O2 and 

alkyl peroxides are converted into aldehyde and water 

(Kirkman and Gaetani, 2006).  

 

9 Glutathione 

Glutathione often called as GSH, is a tripeptide low molec-

ular weight thiol (γ-L-glutamyl-L-cysteinylglycine) primar-

ily involved in the protection of cellular system against ox-

idative stress.  It is the most abundant antioxidant estimat-

ed to be 1-10 mM inside the cell (Meister and Anderson, 

1983; Forman, 2016). Cytosol is the primary reservoir of 

total cellular GSH (85-90 %) and left 10-15% is distributed 

in other organelles like mitochondria, nuclear matrix and 

peroxisomes (Lu, 2000). Initially its function has been 

linked to the antioxidant only but with passing time, novel 

roles appeared. Signal transduction, expression of genes, 

cellular apoptosis by glutathione depletion (Franco et al., 

2008), glutathionylation of proteins for functional regula-

tion (Chandel et al., 2016 Peskin et al., 2016) and metabolism 

of nitric oxide (Jones, 2004). 

 

10 Glutathione Peroxidases (GPx) 

 Glutathione peroxidase is a seleno-cysteine (Se-Cys) based 

antioxidant protein involved in the reduction of peroxides. 

Reduction of high reactive peroxides to the less reactive 

compounds requires thiol which is derived from two mole-

cules of glutathione (Warner and Wispe, 1997). Glutathione 

is an important cellular component that oxidizes non-

enzymatically even in the absence of GPx to maintain cellu-

lar redox homeostasis. Altered function of GPxs leads to 

the accumulation of peroxides radicals which leads to fur-

ther cellular defects including tissue injury, cytokine-

mediated inflammations (Meyer et al., 1994). There are four 

GPx proteins, termed as Gpx1, Gpx2, Gpx3 and Gpx4. 

Gpx1-3 are tetrameric while Gpx4 is monomeric protein. 

Gpx1, often called as cytosolic Gpx, can catalyze the reduc-

tion of lipid peroxides, organoperoxides (Grossmann and 

Wendel, 1983). This is a tetrameric protein and each subu-

nit constitutes of ~ 22 kDa of molecular weight. Gpx2 is 

also a cytosolic tetrameric protein that share a common 

substrate as Gpx1. It is more homologous to Gpx1. In 

mammalian system it is found in the liver and gastrointes-

tinal tract (Chu et al., 1993). Gpx3 is an extracellular glyco-

protein, majorly found in blood plasma sharing 50% se-

quence homology with Gpx1 (Takahashi et al., 1990).  Gpx4 

is a phospholipid hydroperoxide glutathione peroxidase 

(PHGpx), which shows some structural differences and 

sequence homology with other Gpxs. It is a monomeric 

protein of ~ 22 kDa of molecular weight catalyzes almost all 

types of peroxides and their fatty acid derivatives (Thomas 

et al., 1990).  

 

11 Peroxiredoxins 

 Peroxiredoxins are ubiquitous thiol-based antioxidant pro-

teins. Peroxiredoxins (Prxs) are better known peroxidases 

member of the oxidoreductase enzyme class which detoxi-

fy free radicals like hydrogen peroxide, hydroperoxides, 

peroxynitrites etc.  It is believed that proteins of this class 

evolved from thioredoxin like precursors (Copley et al., 

2004). 

 

12 Antioxidants and their functions 

 In aerobic life, oxidation is an autonomous metabolic pro-

cess in which numerous forms of free radicals are generat-

ed. Cellular redox system with its antioxidant proteins are 

fully devoted in balancing the free radicals load. Antioxi-

dants are the chemical species that inhibit or delay the de-
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fects of reactive oxygen species and promote healthy life 

(Halliwell, 2007). 

Antioxidants can be defined in many ways like as biochem-

ists concern, it is a chemical species that quench the reac-

tive oxygen species or free radicals into stable or inert 

compounds. From a nutritionist point of view, antioxidants 

are the compounds that contain bioactive compounds like 

polyphenols, flavonoids, carotenoids, vitamins etc. for the 

health benefits (Finley et al., 2011).  

ROS imbalance is reported for the various pathobiological 

defects and chronic diseases, for example cancer and cardi-

ovascular diseases. Oxidation of vital components like 

DNA, protein, lipids attributes for these defects. There is a 

rich history of consumption of food-based antioxidants to 

avoid health defects. In 18th and 19th century people were 

aware and used to consume citrus food (containing vitamin 

C) to prevent scurvy (Lind, 1983), unpolished rice (vitamin 

B1) to prevent beriberi (Fletcher, 1907) and consumed liver 

from meat source (vitamin A) to prevent night blindness 

(Wolf, 1978).  

13 Components of antioxidants:  

13.1 Carotenoids: Carotenoids represent a huge fami-

ly compound, sharing its presence in most of the plant 

pigments for color. Carotenoids are also present in ample 

amounts in our dietary foods like vegetables and fruits. 

Tomato, carrot, berries are some of the examples which are 

the good source of carotenoids. Carotenoids take part in 

the form of hydrocarbons, α and β-carotene, lycopene, xan-

thophyll, lutein and zeaxanthin in dietary foods. These 

compounds are known for the health benefits against sev-

eral diseases. A few carotenoid compounds are also present 

in human blood and tissues (Krinsky and Johnson, 2005). β-

carotene, lycopene, lutein and zeaxanthin are the most 

common examples of carotenoids. β-carotene and lycopene 

are the fat-soluble carotenoids, found in low density lipo-

proteins (LDL). Lutein and zeaxanthin are the members of 

xanthophyll compounds present in the high- and low-

density lipoproteins (Clevidence and Bieri, 1993).  

13.2 Polyphenols 

 Polyphenols are one of the most abundant phytochemicals 

produced as a secondary metabolite by the plants (Crozier 

et al., 2006). Like most of the plant components, these are 

not directly involved in the growth of plants. It has some 

ancillary roles like defence against pathogens, as a signal-

ing molecule to uptake nutrients etc. (Scalbert et al., 2005). 

Structurally polyphenols are aromatic rings containing hy-

drocarbons with one or more hydroxyl groups and classi-

fied in two major classes: glycosides and aglycones. Glyco-

sides are sugars containing polyphenols. Aglycones are 

non-sugar single compounds (Jaganath and Crozier, 2009).  

Flavonoids are one of the most important naturally occur-

ring polyphenols derived from plant sources. These com-

pounds are reported for their vast pharmaceutical and 

nutraceutical values. Fruits, vegetables and their derived 

products are considered as good sources of polyphenols. 

Flavonoids are also further subclassified as flavones, flavo-

nols, flavanones, chalcones and isoflavones (Spencer et al., 

2008). Non flavonoids are low molecular weight (C1-C6) 

phenolic acids, also present in our dietary food sources like 

in berries.  

13.3 Vitamins 

 Majorly vitamin C and E act as a primary antioxidant ca-

pable of scavenging radicals generated within cells or 

plasma before they can damage DNA, proteins or lipids. 

Normal cellular metabolism in chloroplasts, mitochondria 

and peroxisomes generates reactive oxygen species (ROS) 

as a byproduct which is enhanced by a variety of environ-

mental stresses, including drought, starvation, wounding, 

high salt, high light, exposure to pollutants, etc. leading to 

oxidative stress. In both plants and animals’ ascorbic acid 

interacts enzymatically and non-enzymatically with dam-

aging oxygen radicals (ROS) and their derivatives to form 

non-toxic, non-radical products, i.e. DHA and 2, 3-

diketogulonic acid (Dalton et al., 1995). Due to its antioxi-

dant nature ascorbate functions as a recycler for other anti-

oxidants. It is involved in the regeneration of lipophilic, 

membrane associated alpha-tocopherol (vitamin E) radical 

at the surface of biological membranes, thus contributing to 

the ability of alpha-tocopherol to break the chain of lipid 

peroxidation in lipid bilayers (Buettner. 1993). Ascorbate 

reduces tetrahydrobiopterin radical in cultured endothelial 

cells due its antioxidant nature for proper action of endo-

thelial nitric oxide synthase (Baker et al., 2001; Patel et al., 

2002). 
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Vitamin E is the fat-soluble compound with distinctive an-

tioxidant activity essential for health, first discovered in 

1922 by Evan and Bishop (Niki and Traber. 2012).  The 

richest dietary sources of vitamin E are edible vegetable 

oils and fat-containing foods (Zingg, 2007). It inhibits the 

production of reactive oxygen species molecules when fat 

undergoes oxidation and during the propagation of free 

radical reactions (Burton et al., 1983). 

13.4 Selenium  

Is an essential trace element naturally present in many 

foods which plays a critical role in reproduction, thyroid 

hormone metabolism, DNA synthesis, and protection from 

oxidative damage and infection (Sunde et al., 2012). Sea-

foods and organ meats are the richest food sources of sele-

nium. In animal and human tissues selenium is active in 

the form of seleno-methionine where it incorporates non-

specifically with the amino acid methionine in body pro-

teins (Terry et al., 2012). 

13.5 Dietary food components for health ben-

efits 

 Dietary intake of antioxidants from our food is considered 

as remedy to avoid the defects of ROS and RNS. It contains 

nutritional value as well as phytochemicals in the form of 

polyphenols, vitamins, carotenoids etc. that are capable of 

scavenging ROS and RNS (Yu, 1994).   

Curcumin is the active compound extracted from turmeric. 

It is a well-known ROS scavenger. Antioxidant activity of 

curcumin is comparable with vitamin C and E. ROS accu-

mulation greatly reduces the cell viability of osteoblasts 

and induces the caspase mediated cell apoptosis. ROS 

(H2O2) mediated cell toxicity in osteoblasts leads to bone 

dysfunction. Curcumin enhances the cell viability by re-

stricting the oxidative stress mediated cell apoptosis. Effi-

cacy of curcumin is effective in bone dysfunctioning or os-

teoporosis (Dai et al., 2017).  

Kiwi fruit is considered as a good source of vitamin-C and 

polyphenols. Studies on kiwi fruit have demonstrated that 

deficiency of vitamin-C and other oxidative stress related 

defects can be overcome by its consumption (Carr et al., 

2013). Various neuronal defects that become detrimental 

due to oxidative stress is lowering down by the consump-

tion of kiwi fruit (Xue et al., 2017). Quercetin is an active 

compound (flavonol) isolated from kiwi fruit that has a 

protective impact against oxidative stress and is used as an 

antioxidant. Kissper is a peptide isolated from kiwi fruit, 

known for its antioxidant and anti-inflammatory effects. 

Results of this peptide suggested that it can create pores in 

synthetic lipid bilayer. In-vivo and in-vitro data suggested 

that kissper can be used as a therapeutic agent to cure in-

testinal inflammation and lipopolysaccharide induced ROS 

generation (Ciacci et al., 2013).  

In-vitro and in-vivo studies suggest that naturally occur-

ring antioxidants reduce the effects of oxidants. Various in-

vitro methods like DPPH, FRAP, ABTS and various fluo-

rescence-based probes are available to test the antioxidant 

efficiency or activity which tells at what rate oxidants 

would be quenched, but it is very difficult to understand if 

it really works similar in the living system. When we come 

to the mechanism of antioxidants functions in the living 

system, there are lots of contradictory statements, which 

are not conclusive. Indeed, there is no evident baseline for 

the antioxidant theory and disease control because of vary-

ing mode of catalytic action of antioxidants (Galati et al., 

2002; Fang et al., 2005). 

14 Conclusion 

All ROS production cause several types of damage to the 

organs and also leads to age related diseases. Antioxidants 

are effective to neutralize and control damage repair. Sev-

eral studies have done about antioxidant effectiveness 

about to age related diseases. Now days peoples are 

awarded about number of antioxidants and their benefits. 

further more and more studies are required to know about 

all aspects of antioxidants and dose or concentration to use 

as threptic for age related diseases that happen by oxida-

tive stress. 
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